Processing math: 100%

Thursday, November 8, 2018

HSC Board Mathematics Model Question Paper 1

Following are HSC Board  Mathematics and Statistics Model Question Paper 1 for Arts and Science.

Model Question Paper 1

Time 3 hours                                                                                               Max Marks 80

Note: (1) All questions are compulsory.
            (2) The question paper consists of 30 questions divided in to four  
                 sections A, B, C, D.
            (3) Section A content questions of 1 mark each
                Section B content questions of 2 mark each
                Section C content questions of 3 mark each
                Section D content questions of 4 mark each
           (4) Use of logarithmic table is allowed.
           (5) Use of calculator is not allowed.
          (6) In LPP only rough sketch of graph is expected. Graph paper is not   necessary
                                           SECTION A                                           
Select and write the most appropriate answer from alternatives in each of  the following questions
1. If p→q is true and p⋀q is false , then the truth values of p and q are
    a) T,F        b) T,T        c) F,T      d ) F,F
2. If the vectors 2ˆiqˆj+3ˆk      and  4ˆi5ˆj+6ˆk     are      collinear then the value of q is
  a) 5         b) 10          c) 5/2       d) 5/4
3.   The two value of k for which the lines with direction ratios k,-6,-2 and  k-1 ,k,4 are        perpendicular to each other are     
  a )8,-1          b)2,3          c) 8,1         d)-8,-1
4. If the function 
       f(x) = (cosx)1x                      x≠0
              = k,                     x=0
       is  continuous at x = 0, then the value of k is 
  a) 1        b) -2         c) 3          d) 4
5. dxx+xn is
  a) 1nlog|xn|   + c    b)11nlog|x1n|   +c 
  c)  log|xn+1|   + c   d)1nlog|xn+1|   + c 
6. The differential equation ydydx  + x = 0 represent family of 
  a) circle     b) parabola     c) ellipse    d) hyperbola
                                                       
                             SECTION B                                       
7. Prepare the truth table for ∼p⋀q
8. Find the general solution of sin(x +⫪/5 ) = 0
9. In ∆ABC, show that   tanA2tanB2=a+bca+b+c
10. Find the value of ⋋ for which the points (6,-1, 2) (8,-7, ) and (5, 2, 4) are collinear 
10. Differentiate sin1(2x1x2)             w.r.t x
11. The displacement S of a particle at time is given by S = t3t25t         find the velocity and acceleration at time t = 2
13. Evaluate 20sinx1+(cosx)2dx

14Solve the differential question      y-xdydx = 0 
                                   OR
14. Find the area of the region bounded by the curve y  = x2 , the x- axis and given lines x=1, and x=5

                                                          SECTION C                               

15. Using truth table, prove the equivalence ∼p∧ q  = (p∨ q)∧
16.. Find the vector equation of the line passing through the point (2,3,-4) and perpendicular to the XZ-plane .Hence find its equation in Cartesian plane
17Find the vector equation of the plane  ˉr=(2ˆi+ˆk)+λˆi+μ(ˆi+2ˆj3ˆk)                     in scalar product form
                                           OR
17. Find the equation of the plane passing through the intersection of the  planes 3x=2y- z+1 = 0 and x+y+z-2 = 0 and the point (2, 2, 1).
18.  Find the value of k, if the function
        f(x) = log (1+2x),              for x 0
               = k,                               for x = 0
              Is continuous at x = 0
19.  Obtain the probability distribution of the number of sixes in two tosses of fair die
                                      OR
19.Let X have p.m.f. 
        P(x)  = kx2                     x = 1,2,3.4
                = 0,                              otherwise 
       .Find mean and variance of X
20. The probability that a certain kind of component will survive a check
       test is 0.6. Find the probability that exactly 2 of the next 4 tested components survive.

                                     SECTION D
21. If three numbers are added the sum is 15. If the second is subtracted from the sum of first and third number the we get '5' and if twice the first number is added to the second and the third number is subtracted from the sum we get '4'. Use  matrices to  find the number. 
.22.In △ABC prove that (b + c -a) tan A/2 = (c + a -b) tan B/2 = tan ( a +b - c) tan C/2  
                                 OR

22.Find the general solution of 3cosx - sinx = 0
23.Find p and q, if the equation px2 -8xy = 3y2 = 14x + 2y + q =0 represent a pair of perpendicular lines.   
24.Find the volume of tetrahedron whose vertices are 
            A (-1, 2, 3), B (3, -2, 1), C (2, 1, 3), and D (-1, -2, 4)
25.Solve by graphically
           Maximize z = 15x + 30y subject to 3x + y ≤ 12, x + 2y  ≤ 10, x ≥ 0, y ≥ 0.
26.If xmyn=(x+y)m+n      then show that  d2ydx2 = 0.
27A manufacture can sell x items at the rate of   ₹(330 -x ) each. The cost of
      producing x items is  ₹(x2+ 10x + 12 ) How many items must be sold so that his profit is maximum?
28.Find the area of the region lying between the parabolas y2 = x and x2 = y.
29.Prove that
a2x2dx=x2a2x2+a22sin1x2     +c
30.Solve the equation x1cos2ydy+y1co2xdx       = 0.

                                              OR
30. In a culture of yeast,the active ferment double itself in 3 hours. Assuming that the quantity increases at a rate proportional  to itself, determine the number of times it multiplies itself in 15 hours. 

                                                            END



HSC Board  Mathematics Model Question Paper 1
Page 1

HSC Board  Mathematics Model Question Paper 1
Page 2

HSC Board  Mathematics Model Question Paper 1
Page 3



HSC Board  Mathematics Model Question Paper 1
Page 4

HSC Board  Mathematics Model Question Paper 1
Page5
 Click For Model Answer Paper no. 1 

No comments:

Post a Comment